New Adsorption Cycles for Carbon Dioxide Capture and Concentration James A. Ritter, Armin D. Ebner, Steven P. Reynolds, Hai Du, Amal Mehrotra Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 ## **Background** - > generally accepted that increasing global temperatures over recent decades due to increasing atmospheric concentrations of greenhouse gases, i.e., CH₄, N₂O, and particularly CO, - carbon sequestration probably newest means being studied to manage CO₂ in the environment - > most likely options for CO, sequestration - chemical and physical absorption - ❖ low-temperature distillation - * gas separation membranes and - physical and chemical adsorption ## **Objectives** - study new pressure swing adsorption (PSA) cycles for CO₂ capture and concentration at high temperature - two key features of these new PSA cycles - > heavy reflux (HR) PSA concept - > use of a hydrotalcite like (HTlc) adsorbent that captures CO₂ reversibly at high temperatures simply by changing pressure - bench-scale experimental and theoretical program being carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799) - nine tasks being carried out over 3-year period #### **Tasks** - Task 1. Construct Fixed Bed Unit (High Temperature System) - Task 2. Modify Existing PSA System to 4-Beds (Low Temperature System) - Task 3. Perform Experiments in the Fixed Bed Unit - Task 4. Perform Experiments in the 4-Bed PSA Unit - Task 5. Modify and Validate Existing PSA Code - Task 6. Carry Out Rapid Adsorbent Characterization Task 7. Carry out Simulations with Validated PSA - Code Task 8. Carry out Detailed Adsorbent - Characterization - Task 9. Carry out Economic Analyses ## **Significant Accomplishments** <u>Publications</u> <u>Invention Disclosures</u> ➤ 6 in print ➤ ➤ 4 in preparation PhD Students Produced > 3 Presentations ≥ 4 submitted ► 16 New Projects **>** 4 **Book Chapters** **>** 1 ## **CO₂ Uptake and Release** from K-Promoted HTlc How does CO₂ interact with K-promoted HTlc? - recent studies describe adsorption and desorption behavior of CO₂ using simple Langmuir and linear driving force models - none of them provide detailed mechanism of CO₂ equilibrium and kinetic behavior - mechanistic understanding and realistic model needed for PSA process design - proposed mechanism that describes CO₂ dynamics of uptake and release via reversible non-equilibrium kinetic model Non-Equilibrium Reversible Kinetic Model $A \equiv CO_2(ad)$ $E \equiv Mg_6Al_2K_2O_{10}$ $B \equiv Mg_6Al_2K_2O_9(CO_3)$ $C \equiv Mg_6Al_2K_2O_8(CO_3)_2$ T&P Dependent Model vs. Experiment at 400 °C # **Equilibrium Theory Model** of Heavy Reflux PSA Why is an equilibrium theory model important? - isothermal model with no non-ideal effects predicts the ultimate performance possible - many analyses in the literature; none describe HR PSA cycles suitable for CO₂ capture - information from such models indispensible to HR PSA Cycle understanding and limitations - carried out fundamental analyses of HR PSA cycles, exposing interesting extreme cases Schematic of Shock Wave and Simple Wave Development During Typical HR PSA Cycle Variation of Heavy Component Recovery (Ω_A) and Purity (Ξ_A) with $\Delta \tau$ (Throughput) at Constant Ψ (Purge to Feed Ratio) ## Heavy and Dual Reflux PSA Cycles Why is the HR PSA concept important? - CO₂ is the heavy component in flue gas and must be enriched to greater than 95 vol% - just like in distillation, heavy component enriched with heavy reflux and light component enriched with light reflux - nearly all PSA cycles designed to purify only the light component using light reflux - understanding of heavy reflux PSA cycles lacking and sorely needed Maximum Performance Based on CO₂ Purity #### Stripping PSA Cycle with HR and EQ Fraction of CnD Effluent Used as HR with Remaining CnD Effluent Taken as Heavy Product #### Simplest HR cycle, with one equalization step between beds 3 and 6. # **Unequal Step-Time Scheduling for PSA Cycles** Why is PSA cycle scheduling important? - feed step time can be lengthened → increases feed throughout - pressure changing step times can be shortened → increases feed throughput or productivity - feed can be delivered simultaneously to multiple beds - multiple configurations possible, depending on the number of beds, and the number and types of steps ## 5-Bed 5-Step Stripping PSA Cycle with LR and HR from CnD Two Equalization steps | Ŧ | HR | 1 | 2 | CnD | I | Г | LR | | 21 | I | P | | LPP/Fee | d | | |-----|---------|---|----|----------|---|----|----------|---|----|----------|---|----|---------|----|-----| | led | Feed | | | HR | 1 | 2 | CnD | I | Г | LR | | 21 | - 1 | 11 | LPP | | | Idle 11 | | | LPP/Feed | | | HR | 1 | 2 | CnD | 1 | LR | | | 21 | | | LR | | 21 | I | P | | LPP/Feed | | | HR | 1 | 2 | CnD | 1 | LR | | | CnD | I | | LR | | 21 | I | P | | LPP/Feed | | | HR | 1 | 2 | ## 5-Bed 5-Step Stripping PSA Cycles with LR and HR from CnD: Effect of Equalization $Q_F = 5 \text{ SLPM}, \gamma = 0.02, t_{evc} = 500 \text{ sec}, P_H = 138 \text{ kPa}$ | Cycle | Number
of EQ
Steps | Throughput
(L STP/hr/kg) | Effective
Pressure
Ratio | Purity
(%) | Recovery
(%) | |-------|--------------------------|-----------------------------|--------------------------------|---------------|-----------------| | I | 0 | $\theta = 57.6$ | 12 | 98.0 | 48.5 | | II | 1 | 1.5θ | 6.5 | 97.0 | 36.1 | | Ш | 1 | 1.75θ | 6.5 | 97.2 | 32.1 | | IV | 2 | θ | 4.7 | 96.8 | 48.0 | | V | 2 | 2θ | 4.7 | 98.5 | 7.5 |